Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity

نویسندگان

  • T. Schneider von Deimling
  • G. Grosse
  • J. Strauss
  • L. Schirrmeister
  • A. Morgenstern
  • S. Schaphoff
  • M. Meinshausen
  • J. Boike
چکیده

High-latitude soils store vast amounts of perennially frozen and therefore inert organic matter. With rising global temperatures and consequent permafrost degradation, a part of this carbon stock will become available for microbial decay and eventual release to the atmosphere. We have developed a simplified, two-dimensional multi-pool model to estimate the strength and timing of future carbon dioxide (CO2) and methane (CH4) fluxes from newly thawed permafrost carbon (i.e. carbon thawed when temperatures rise above pre-industrial levels). We have especially simulated carbon release from deep deposits in Yedoma regions by describing abrupt thaw under newly formed thermokarst lakes. The computational efficiency of our model allowed us to run large, multi-centennial ensembles under various scenarios of future warming to express uncertainty inherent to simulations of the permafrost carbon feedback. Under moderate warming of the representative concentration pathway (RCP) 2.6 scenario, cumulated CO2 fluxes from newly thawed permafrost carbon amount to 20 to 58 petagrams of carbon (Pg-C) (68 % range) by the year 2100 and reach 40 to 98 Pg-C in 2300. The much larger permafrost degradation under strong warming (RCP8.5) results in cumulated CO2 release of 42 to 141 Pg-C and 157 to 313 PgC (68 % ranges) in the years 2100 and 2300, respectively. Our estimates only consider fluxes from newly thawed permafrost, not from soils already part of the seasonally thawed active layer under pre-industrial climate. Our simulated CH4 fluxes contribute a few percent to total permafrost carbon release yet they can cause up to 40 % of total permafrostaffected radiative forcing in the 21st century (upper 68 % range). We infer largest CH4 emission rates of about 50 TgCH4 per year around the middle of the 21st century when simulated thermokarst lake extent is at its maximum and when abrupt thaw under thermokarst lakes is taken into account. CH4 release from newly thawed carbon in wetlandaffected deposits is only discernible in the 22nd and 23rd century because of the absence of abrupt thaw processes. We further show that release from organic matter stored in deep deposits of Yedoma regions crucially affects our simulated circumpolar CH4 fluxes. The additional warming through the release from newly thawed permafrost carbon proved only slightly dependent on the pathway of anthropogenic emission and amounts to about 0.03–0.14 C (68 % ranges) by end of the century. The warming increased further in the 22nd and 23rd century and was most pronounced under the RCP6.0 scenario, adding 0.16 to 0.39 C (68 % range) to simulated global mean surface air temperatures in the year 2300.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The deep permafrost carbon pool of the Yedoma region in Siberia and Alaska

[1] Estimates for circumpolar permafrost organic carbon (OC) storage suggest that this pool contains twice the amount of current atmospheric carbon. The Yedoma region sequestered substantial quantities of OC and is unique because its deep OC, which was incorporated into permafrost during ice age conditions. Rapid inclusion of labile organic matter into permafrost halted decomposition and result...

متن کامل

Spatial analyses of thermokarst lakes and basins in Yedoma landscapes of the Lena Delta

Distinctive periglacial landscapes have formed in late-Pleistocene ice-rich permafrost deposits (Ice Complex) of northern Yakutia, Siberia. Thermokarst lakes and thermokarst basins alternate with ice-rich Yedoma uplands. We investigate different thermokarst stages in Ice Complex deposits of the Lena River Delta using remote sensing and geoinformation techniques. The morphometry and spatial dist...

متن کامل

Editorial: Organic carbon pools in permafrost regions on the Qinghai–Xizang (Tibetan) Plateau

The current Northern Circumpolar Soil Carbon Database did not include organic carbon storage in permafrost regions on the Qinghai–Xizang (Tibetan) Plateau (QXP). In this study, we reported a new estimation of soil organic carbon (SOC) pools in the permafrost regions on the QXP up to 25 m depth using a total of 190 soil profiles. The SOC pools were estimated to be 17.3± 5.3 Pg for the 0–1 m dept...

متن کامل

Differential response of carbon fluxes to climate in three peatland ecosystems that vary in the presence and stability of permafrost

Changes in vegetation and soil properties following permafrost degradation and thermokarst development in peatlands may cause changes in net carbon storage. To better understand these dynamics, we established three sites in Alaska that vary in permafrost regime, including a black spruce peat plateau forest with stable permafrost, an internal collapse scar bog formed as a result of thermokarst, ...

متن کامل

Quantification of upland thermokarst features with high resolution remote sensing

Climate-induced changes to permafrost are altering high latitude landscapes in ways that could increase the vulnerability of the vast soil carbon pools of the region. Permafrost thaw is temporally dynamic and spatially heterogeneous because, in addition to the thickening of the active layer, localized thermokarst features form when ice-rich permafrost thaws and the ground subsides. Thermokarst ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015